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THE FREQUENCY OF TORSIONAL VIBRATION OF A TAPERED BEAK

By Robert P. Coleman
SUMMARY

A solution for the equation of torsional vibration of
tapered beams has been found in terms of Bessel functions
for beams satisfying the following conditions: (a) The
cross sections along the span are similar in shape; and
(b) the torsional stiffness of a section can be sxpressed
as a bower of a linear function of distance along the span.
The method of applying the analysis to actual cases has
been described. OCharts are given from which numerical
values can be immediately obtained for most cases of prac-
tical importancs. The theoretical values of the frequency
ratio have been experimentally checked on five beams hav-
ing different amounts of taper.

INTRODUCTION

The frequency of torsional vibration of a uniform
beam can be calculated for a number of shapes of cross
section. (See references 1 and 2.) The corresponding
cagses of tapered beams elther have not been solved or are
not readily available. A special case of longitudinal
vibration of tapered beams treated by Nadbl (reference 3)
is applicable also to torsion for a special case (n = 2).
In the present paper, the analysis has been extended %o
the case of ‘tapersd beams subject to rather broad condi-
tions, and a2 closed solution of the differential equation
of motion has been obtained in terms of Bessel functions.
The result 1s expressed in such & form that the effect of
taper 1s given independently of the effect of cross sec-
tion. Hencs, except for certain limitotions imposed on
the solution of the differential equation, the frequency
of a tapered beam can be calculated if the solution for
the corresponding uniform boam is known.
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SYMBOLS

angular displacement from eguilibrium,
rectangular coordinates in beam.

polar moment of inertia of section,
torsion modulus of gection.

shear modulus of material.

length of bean.

time.

density of material.

angular frequency (w = 2wf, where f

in cycles per second).

angular frequency of a uniform beam,

T GJ
2t pip

torsion funection.

constants.

exponent in expression for variation of
2N + 1).

torsion modulus along span (n =
(n - 1)/2.

semichord.
a/n
(&)
Co

z
12

1w Ipp _ _1 w
(1 - M)/ J¢ 1=~ Mg W

roots of equation (7).

n |4

is
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E=n¢,
InP

- B

B = JGe

n, number of mode.

In(8),Ta(l), Bessel functions of first and second king,
respectively,.

‘ Subscripts:
o, at roo},

t, at tip.

ANALYSIS

The differential equation for the motion of & section
of a beam in torsional vidbration (reference 1) is

3%¢g 3 ae]
I = — 1 GJ _— 1

where GJ is the torsional rigidity of the section. For
harmonic vibrations it is known that

2

3”8 2
= w ) G
at®
Then
L ler(z) ¥l s owr 1,0 =0
dz 22J) gz P P -
or
3“. - . ae .
a6 ,1454d46  Ippw - 0 (2)

az> J dz dz IG

The functions I, and J (reference 4) for a prismatic
beam may be expressed in the form '
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P f (x¥ + %) ax ay
3 dp’
2 a2 - — —_
(/Cyp (x + y= + x 5y v ax) dx 4y

J =
where ¢, the torsion function, depends upon the cross
section. This function is known for a rumber of shapes

of cross section. A few examples from references 5 and ©
are given:

(a) Cirecle of radius r:

3
2y Ir
CP=O,J=IP=(TI’I‘)—2-—

(b) Ellipsée with semiaxes a and ©b:

2 _, -b2 aa 'ba
P = = & =0 v J = (mad) 22—
a? + b° v a2 + b2

(¢c) DRectangle with sides 2a and 2b:

(2n+1) mx

3 o (-)n gsinh ~———=t——
T n=o 3 (2n+1) ma
(2n+1) cogh —z—
2b
- 16 3
J = = k ab

where k has the values given by the following table.

a/p|1.00 [1.50 {1.75 |[2.00 [2.50 [3.00 |4 6 8 10 <

k 424 | 589 .642| J68B| .74B| .790| .844} .BS6] .922 <940 1

The torsion modulus, J, of a section of a tapered
beam is very nearly the same as that of a prismatic deanm
having the same section. 4 comparison of the angular de-
flectiong produced by a static torque in a conical shaft
as calculated by the exact theory (reference 7) and Dby in-



N.A.C.A., Technical Note No. 697 5

tegrating the torsion modulus for a cylindrical shaft
shows a discrepancy of the order of 1/6 tan® «, where «a
is the half angle of the cone. For a cone with tan o =
0.10, +the discrepancy is only G.l7 percent. In the fol-
lowing anelygis, this distinction in the torsion modulus
has been ignored. '

The boundary conditions %to be applled to the solution
of eguation (2) will depend upon the method of support of
the beam, For the case of most interest in this paper, a2
beam built in at 2z = 0 and free at =z = 1, the boundary
conditions are:

at z = 0, 86 =0
o8
at z =1, 3z = 0]

A solutinn of equation (2) has been found for the
case of tapered beams satisfying the following conditions:

(2) A1l cross sections along the span are similar in
shape.

(P) The torsion modulus J can be éxpressed as a
vower of a linear function of position along the span,
Then, from condition (a), the ratio IP/J is a constant

along the span and is equal to its value at the root sec—

tion, IPO/JO' From condition (d),

J = Jo(l - Bz)n = Jonn

The torsion modulus is proportional to the fourth power of
the linear dimengions. Hence, in terms of the semichord,

5 4
A &
Jo Co
. _‘i.>4/n
Co
At the tip,
a/n
cg
Ny = (——. . (3)
5 o
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It may be noted that

Figure 1 shows a number of typical plan forms corre-
sponding to different wvalues of n. The upprer half of
thig figure can also be considered as a vlot of semichord
against TN for different values of =n.  In this case 1
increases from right to left. The following properties of
these curves are noted:

d ce/ecg =n
at N =1, T T 1
at N = 0, EEE%EQ =0 wvhen n > 4

= o when n < 4

In termé of ¢ and B, equation (2) can be written

3
1 4J d8 . 2 g2 12 ¢

a6, 14ad =0
At T at at

For the case of a uniform beam (dJ/at 0), equa=

tion (2) has the well-known solution
8 = C; sin Bw 1 & + C3 cos Bw L-ﬁ
The frequency.equation for a cantilejer beam is
cos Bw 'l =0
Bwl = (2m-1) 3
where m =1, 2, 3, ...
The lowest frequency is

T

LUl = EE:L—

Equation (2) can then be written

éfg+l_£é§+<%__11>e=o (4)
J at dg w, 2
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Now
ﬁ =1 - 31 4
B o= 1L~gn =.l ; %
B I
s manam - ()

After eguation (4) has been expressed in terms of T, it
becomes

. ° a? . ° n 46 w T e
(1"'”1:) Eﬁ%+<l—nt) 'ﬁEﬁ+(m) 8 =0

Put
N wm_ _ -
1_ntwle“§‘n§o

Then
ace n dé _ -
EF-!-EEZ-FG—O (5)

SOLUTION OF DIFFERENTIAL EQUATION

A solution of equation (5) has been found in terms of
Besgel functions. Put '

6 = é% Iy (L)

Then equation (5) becomes

1 | a2a¢( - 2\ aJ(t) An = A(A+L) _
ZX'[ d§2§)+n§ dé +<l- n gg )J(g):l-—o

If A= {(n - 1)/2, this equation reduces to Bessel's equa-—

tion:
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a?r(t) 1 as() AZ _
—————gdg——-l'—g d__c +<l-—£—-2>J(§)-O

Therefore @\(g) is & Bessel function of order A.

The complete solution containing two arvitrary con-
stants to be determined by the boundary conditions is

6

é% [AJA(g) + BJ_A(ﬁ)J; A, nonintegral
(6)

D
li

f%[:A@\(Q) + BY) (L) ]; A, integral J

The function Yk(ﬁ) is a Beggel function of the second kind,

The boundary conditions in terms of { are:
at z =0, (=10, 6 =0

ntv c = nt go: %

Il

vl

.L’ n =O

at %

After these conditions have been applied, the resulting
equations can be simplified by means of the relations for
Besgel functions:

(x)

Je
™
1
B
oy
—~
o
e
1
[
M
1
=]
<y

le
[ man |
M
fnd
oy
P
H
N
| MR |
I
H
B
ey
P
e
N

The condition that the two equations for & and B have
gsolutions other than A =0, B = 0, 1is that the determi-
nant of the coefflcients of A and B vanish:

Iy (¢,) J
A §°. -A(Co) = 0: A, nonintegralj
e (Ml =31 (Mgs)
= (7)
A T\ (6y)
= 0; A, integral
I q (M L) T, (M 8D /
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This condition determines an admissible set of values of
go' the roots of equation (7). These roots will be called

gr-

After the value or values of ﬁo that satisfy the

determinantal equation have been found, the shapes of the
deflection curves for the various modes can be directly
obtained from equation (6). At the root section, { =

§o=§r’ & =0,

0 = A\ (C,) + BJak(gr); A, nonintegral
0 = Aﬁ\(ﬁr) + BY;(ﬁr); A, integral
Hence |
6 = —Ax [J;\(g) - —J}\—(--g—gz'— J (g) ; A , nonintegral
? T 06 T=A
€ (8)
A F
B = EX [Jx(g) - é%?fij ¥ (£) ] : A, integral

where { determines poeition along the span.

Equation (7) is a transcendental equation of which
the roots, ﬁr, determine the frequencies of the various
modes. The equation cannot be solved explicltly but may
be solved indirectly. The roots may be obtained to any
desired accuracy by use of tables or by the graphical pro-~
cedure of plotting the value of the detorminant against

o+ For each root there is 2 corresponding natural fre-—

guency of wvibration given by
2
w=§r <‘l—nt);w1

For the case of a pointed beam, equations (7) can be
expressed in a simpler form. From the series expansion
for Bessel functions,

11 J?\-l-l ('ﬁt gO) (ntgo)EK}-\*—l) r <"7\)
m = lim 2(?\4_1) -
Ny —> o Jax_l(ﬂtﬁo) Ny—>0 2 r(a+2)

Hence, for pointed beams (Mg = 0), the first of equations
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(7) becomes
J7\+1<nt§o)

M) = - T n_q (Mg 0g)

J"‘7\<§O) = 0
When A is an integer, the same result is obtained:

KT S W R

(T].t §0)7\+l ﬁ(ntgo)
A+l

1l

lim

T (€o)
Ng—>o0 2MI (1)1 Al 2 °

= 0
APPLICATION OF ANALYSIS

The preceding analysis can be immediately applied t9
beansg the forms of which are mathematically specified by
values of n and M. liost beams, however, will not ex-
actly correspond to one of these cases; a method must
therefore be found for determining the best values of n
and Ty for the actual beam. An approximate method will
be illustrated for a wing tho shape of which 1s given by a
drawing. Othor methods, such as the mothod of least
squares, are also available for determining these paramo-
ters. The thicknoess will be assumed to vary in the samo
way as the plan form.

A gketch of a typical wing, together with a table of
dimensions, ig given in figure 2. It is required to rep-
resont thisg shape by an eguation of the form

n/4
c = ¢yl

The parameter T varies linearly along the span from a
value of My at the tip to 1 at the root. The procedure

is to assume arbitrarily a value of T, then to make a

logarithmic plot of chord or semichord against T. This
process is repeated for different values of ﬂt until the
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value of T giving the best straight line is determined.

The slope of this line is the value of n/4. The tﬁird and
fourth columns of the table in figure 2 gilve values of T
for the assumed values for Ty of O and 0.,1. Filgure 3

is a logarithmic plot of chord against T. The points for
fly, = 0 fall nearly on a straight line. The slope of tals
line is 0.37, which gives n = 4 X 0.37 = 1l.48. The values
of ¢ recalculated from the equation

c = 0.96 M°*37 -
are glven in the last column of the table in figure 2.

The frequency ratio, w/wl, determined from the roots

of equation (7), is a function of only two variables, n
and T;. Figure 4 shows this ratio as a function of T

for several wvalues of n. The actual frequency ls given by

w:.-(&)ﬁ_ LAY ¢ 3
1 21 IDp

The freguency ratic for pointed beams (Ty = 0) 1is given -
in figure 5 for several values of n and for several modes.
For the wing previously described (fig. 2), the frequency
ratio is 1.77. The shavpe of the deflection curve is shown
in figure 6 for several typical values of n and T.

ZXPERIMENTAL RESULTS

Five duralumin beams (fig. 7) were constructed and
their frequencies were measured to check the theoretical
values of the frequency ratio. The central cross section
of each beam was & rectangle 6 inches wide and 1/4 inech
thick. The beames were geometrically similar in cross sec-—
tion along the span and had straisht taper, the correspond-
ing velues of Ty TDbeing 1.00, 0.75, 0.50, 0.25, 0.00. I%
is apparent from the boundary conditions that a2 freely sus-
rended symmetrical beam vidvrating in torsien with & node
2t the center will have the same frequencies as one built
In at the center, The preceding analysis may therefore be
applied %o these beams.

The experimental values of the frequency ratio are
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rlotted together with the theoretical curve for n = 4 in
figure 8. The greatest discrepancy between exveriment and
theory is 2 percent, which is considered %to be within the
limit of accuracy determined by the machining of the beams
and the measurements of the frequency.

CONCLUSIONS

The results of the tests of five beams showed that
the assumptions underlying the equation of torsional vi-
bration of a tapered beam

e 3 36
Plp 3%% = 3z [GJ(Z) az]

are Jjustifiable for all practical purposes. The frequency
ratio for even the most tapered case agreed with the theory
to within the experimental error.

Langley Memorial Aeronautical Laberatory,
National Advisory Commititee for Aeronautics,
Langley Field, Va., January 23, 1939.
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Figure 2.- Plan of a typical wing.
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